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Abstract. Extreme events are a challenge to natural as well as man-
made systems. For critical infrastructure like power grids, we need to
understand their resilience against large disturbances. Recently, new
measures of the resilience of dynamical systems have been developed
in the complex system literature. Basin stability and survivability re-
spectively assess the asymptotic and transient behavior of a system
when subjected to arbitrary, localized but large perturbations in fre-
quency and phase. To employ these methods that assess power grid
resilience, we need to choose a certain model detail of the power grid.
For the grid topology we considered the Scandinavian grid and an en-
semble of power grids generated with a random growth model. So far
the most popular model that has been studied is the classical swing
equation model for the frequency response of generators and motors.
In this paper we study a more sophisticated model of synchronous ma-
chines that also takes voltage dynamics into account, and compare it
to the previously studied model. This model has been found to give an
accurate picture of the long term evolution of synchronous machines in
the engineering literature for post fault studies. We find evidence that
some stable fix points of the swing equation become unstable when we
add voltage dynamics. If this occurs the asymptotic behavior of the sys-
tem can be dramatically altered, and basin stability estimates obtained
with the swing equation can be dramatically wrong. We also find that
the survivability does not change significantly when taking the voltage
dynamics into account. Further, the limit cycle type asymptotic behav-
iour is strongly correlated with transient voltages that violate typical
operational voltage bounds. Thus, transient voltage bounds are domi-
nated by transient frequency bounds and play no large role for realistic
parameters.
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1 Introduction

In this paper we study the question of how detailed a dynamical model of the power
grid needs to be to accurately assess the impact of extreme events. Power grids are
among the most critical infrastructure for modern societies, in particular, power grid
failures have dramatic economic and societal impacts. They can shut down trans-
portation and communication networks, force hospitals to work on backup power,
and generally bring a modern society to a complete stand still.
As a result, the stability and resilience of power grids is a well studied issue. It

usually comes in two forms. First, linear stability measures assess the stability of the
operating state of the power grid to inevitable and omnipresent small fluctuations.
Secondly, detailed fault simulations ensure that any one component of the power grid
can fail while the network remains operational, this is the (N-1)-criterion.
The concepts of basin stability and survivability of dynamic systems offer a third

perspective on the inherent resilience of power grids. These assess the ability of the
power grid to withstand localized arbitrary large disturbances [1,2] such as sudden
severe load or input changes. In order to evaluate the resilience of power grids of a
particular topology against such large disturbances, a dynamic model of the power
grid is required. In the engineering literature, a number of models for power grids of
various degrees of accuracy have been developed [3,4]. A more detailed model that
included some voltage dynamics was studied in [5]. So far, it had not been studied
which level of model detail is actually required to assess the response of large networks
to large generic disturbances. This paper starts to fill this gap by comparing a 4th
order model found to be sufficient for the post fault state analysis in [4] to the classic
swing equation model that has been the focus of most of the theoretical work so far.
We find that taking the voltage dynamics into account does not lead to a large

change in the transient frequency behavior, but may dramatically change the asymp-
totic behavior of the equations.
In the next section we will describe two power grid models of different detail or

order. The swing equation is the model used overwhelmingly in the theoretical physics
literature. The 4th-order model is a more detailed model separating the electric and
mechanical aspects of the power grid to some degree. This was found in the engineering
literature to give a better picture of the long term dynamics of power generators. We
will then briefly review the synthetic power grid topologies we use in this paper.
In the subsequent section we briefly review the methods of basin stability and

survivability that we will study. Finally, we present our results before concluding and
discussing further steps.

2 Power grid models

2.1 Swing equation

The swing equation describes the power grid dynamics of N synchronous machines
with two equations per node i ∈ 1, .., N : for phases φi and frequency deviations
ωi. In this so-called classical model, generators are represented as constant power,
constant voltage sources [6,7] with voltage magnitude Ui and rotating complex voltage
Vi = e

iφiUi. Besides the constant voltage magnitude the machines are parametrized
by the constant mechanical input power Pi, the moment of inertia Hi and an effective
damping term Di. The frequency and phase are the instantaneous speed and position
of both the electric field voltage and the rotating mass. Note that the power in-feed
Pi represents the net generation at a node which which is a mix of consumption
and generation from the underlying distribution grid connected to the node in the
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transmission network. We assume that the net generation Pi is not affected by the
dynamics we study. All nodes are represented as synchronous machines where positive
and negative Pi distinguish net producers from net consumers and the sum over
all input powers Pi is zero. The admittance matrix of the transmission network,
Yij = Gij + jBij , is symmetric and the diagonal is defined as Yii = −

∑
j Yij . These

assumptions allow a fairly accurate description of the system’s transient behavior
after a disturbance in the time period of the first swing which is usually one second
or less [7]. The swing equation describes the dynamics of such a deviation, ωi, from
the grid frequency ωn. That is, the instantaneous speed of rotation is ω̃i = ωi + ωn,
normal operations are characterized by ωi = 0. The main content of the system is in
equation (2), which is a first order approximation of energy conservation, with power
input, the power balance with the rest of the power grid, and a friction term:

dφi

dt
= ωi, (1)

2Hi
ωn

dωi

dt
= Pi −�

∑

j �=i
(ViI

∗
ij)−Diωi. (2)

where �(ViI∗ij) is the real part of the power flow between node i and node j and Pg,i
the generated power from node i. The complex current Iij from node i to node j is
given by:

Iij = Yij(Uie
iφi − Ujeiφj ). (3)

It is convenient to introduce the current Ici = e
−iφi∑

j Iij in the co-rotating frame.
The total co-rotating current at a node is given by:

Ici = e
−iφi

N∑

j=1

YijVj = e
−iφi

N∑

j=1

YijUje
iφj =

N∑

j=1

YijUje
i(φj−φi) (4)

As Yii = −
∑
j Yij holds, we can combine these equations into the swing equation:

dφi

dt
= ωi, (5)

2Hi
ωn

dωi

dt
= Pi −�(Ui(Ic)∗)−Diωi

= Pi −�
∑

j

UiY
∗
ijUje

i(φi−φj) −Diωi. (6)

In the important special case that the ohmic resistances of the power lines can be
neglected, and we have Gij = 0, the swing equation reduces to the familiar form:

dφi

dt
= ωi, (7)

2Hi
ωn

dωi

dt
= Pi −�

∑

j

UiBijUj(ie
i(φj−φi))∗ −Diωi (8)

= Pi −
∑

j

UiBijUj sin(φi − φj)−Diωi. (9)
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Fig. 1. Scheme of a synchronous machine in the co-rotating frame. Typical generators have
three-rotor windings with three axis (dotted arrows), one for each phase. The transformation
in the co-rotating (d-q)-frame reduces the dimensions of state space. Here, the d-q coordi-
nates rotate at a reference frequency ω and are phase shifted compared to the three original
axis by Θ = ωt.

The fixed point equations of the dynamics simplify to the power flow equations:

ω�i = 0, (10)

Pi =
∑

j

UiBijUj sin(φ
�
i − φ�j ). (11)

2.2 4th-order model

Usually the swing equation is used for short time periods to analyze the transient
behavior of generators in a power grid, the so-called first swing. The fourth-order
model (Eqs. 13–18) also takes the back reaction of the power flow onto the voltage
into account [4]. This has the effect that the voltage as seen by the power grid, and the
rotating mass are no longer the same but become dynamically coupled. The voltage is
described in a co-rotating frame with axes labelled d and q (see Fig. 1). Thus we have
the voltages Eq,i and Ed,i (see Eq. (17) and Eq. (18) respectively), and the complex
voltage Ui = Eq,i + iEd,i = e

−iφiVi in the co-rotating frame is now dynamical. For
convenience we also introduce the notation

Ici = Iq,i + jId,i (12)

for the co-rotating current introduced above. Now, the equations for the swing mass
still reflect the law of energy conservation, they are just phase shifted:

dφi

dt
= ωi (13)

2Hi
ωn

dωi

dt
= Pi −�

∑

j �=i
(VjI

∗
ij)−Diωi (14)

= Pi −�(Ui(Ici )∗)−Diωi (15)

= Pi − Ed,iId,i − Eq,iIq,i −Diωi (16)

and complemented by two equations for the complex voltage [3],
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Td,i
dEq,i

dt
= −Eq,i +Xd,iId,i + Ef,i, (17)

Tq,i
dEd,i

dt
= −Ed,i +Xq,iIq,i. (18)

The new parameters have the following physical interpretation: Ef,i is the rotor field
voltage at which the generator is run. The time constants Td,i, Tq,i parametrize the
speed of the voltage dynamics in the d- and q-axis. Finally the reactances Xd,i, Xq,i
parametrize the influence of the currents in the generator on the voltage.
The limit towards the swing equation is provided by setting Eq,i = Ef,i and

Ed,i = 0, and ensuring that
dEq,i
dt
=
dEq,i
dt
= 0. This occurs in the limit

Xd/q,i

Td/q,i
→ 0. (19)

For the fixed point of the 4th order model we require more than just the power flow
balancing:

ω�i = 0, (20)

Pi = E
�
d,iId,i(E

�
d , E

�
q , φ

�)− E�q,iIq,i(E�d , E�q , φ�), (21)

E�q,i = Xd,iId,i(E
�
d , E

�
q , φ

�) + Ef,i, (22)

E�d,i = Xq,iIq,i(E
�
d , E

�
q , φ

�). (23)

In Appendix A. we provide a derivation of the form of the equation used here, from
the form in the engineering literature, which allows us to use reference numerical
values for the various parameters introduced.

2.3 Synthetic power grid topologies

The before mentioned grid models are run on real but also on artificial power grids
in order to test them on a statistic ensemble of grid topologies.
In addition to the topology of the Scandinavian power network [8], we further

consider a recently published model for synthetic power grid topologies [9]. It is a
network growth model aiming to reproduce topological properties of real power grids
and other spatially embedded infrastructure networks. The growth process is con-
trolled by a heuristic redundancy/cost optimization function, which takes not only
the length of transmission lines but also additionally created redundancy in the form
of alternative routes into account. For a detailed discussion of the algorithm, we refer
to [9]. Note that the resulting power grid topologies come with a spatial embedding
of the network and hence information about the link lengths. This allows to esti-
mate appropriate admittances Y from textbook parameter values. For comparability
with the basin stability literature we choose to use a constant coupling for this work
though.

3 Stability measures

Power system stability is defined as the power grid’s ability to remain in operating
equilibrium [10–12]. Different forms of stability are angle, frequency and voltage
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stability which refer to the power system’s ability to maintain synchronism, power
frequency and voltage within an acceptable range, respectively. It is also distin-
guished between the reaction of phase, frequency and voltage towards small and
large frequency and phase disturbances on short or large time scales. In this work
we are primarily concerned with synchronicity and transient frequency stability, at
short time scales, following sudden angle and frequency changes, where the voltage
is not initially perturbed. This is the regime that is feasible to model with the swing
equation.
Transient stability can be either assessed through time-domain (T-D) analysis

or by non-conventional approaches as direct stability assessments and automatic
learning ones. T-D approaches assess stability by solving the system’s dynamic equa-
tions in the during-fault (around 100ms) and post-fault configurations (3–15 s). The
definition of criteria for the loss of synchronism is usually left to system operator’s ex-
perience. T-D methods are able to accurately asses stability information and relevant
parameter ranges for any power system design. However, due to the computational
costs, they are not suitable for real time stability screening or power system control.
Further, there is no information how “far” from stability the system is [11].
Another method for the assessment of transient stability is the Equal Area

Criterion (EAC) that was used to compare different model details [4]. The EAC
allows to assess information about grid stability in real time to prevent a system
break down. It investigates if the system is capable of absorbing the kinetic energy
change induced by a disturbance in electric power [11]. In order to be usable as a real
time preventive measure, the EAC avoids full time-domain simulations. The EAC
criterion is a long known method for a single machine connected to an infinite bus.
For larger systems, the SIME (Single-Machine Equivalent) separates the network
into critical and non-critical machines by T-D simulations and aggregates them into
groups to determine the parameters of the one-machine infinite bus system [4]. Here,
a possible source of errors is to correctly determine the critical and non-critical
groups where the initial conditions in the T-D analysis are pivotal.
A direct method to assess small-signal stability is the study of Lyapunov expo-

nents. Here, the largest non-zero eigenvalue of the linearized dynamics around the fix
point determines the local stability in a non-linear dynamic system after small per-
turbations. A convenient way to use this method on a network is the master stability
function approach [6,13]. This approach separates out the local dynamics and the net-
work structure. As the general shape of the master stability function is independent of
the actual network, it is possible to quickly evaluate the asymptotic stability of a given
dynamical system for various topologies. However, problems arise if the Laplacian
is not diagonalizable [14], e.g. if the ohmic resistances of transmission lines are not
neglected.
A direct method to evaluate the response to large perturbations in order to asses

the domain of attraction of a certain fixed point is the Lyapunov direct method, also
called Lyapunov’s second method. The Lyapunov second method constructs a set of
suitable Lyapunov functions for the dynamic equations of motion and investigates
the sign the function and its derivatives take on the boundary of the stability
domain [10,15–17]. In Lyapunov’s second method, the difficulty is the right choice
of Lyapunov functions and unfortunately, there is no effective method to build such
functions for general dynamic systems.
Hence, Lyapunov exponents only give information about small-signal stability,

and Lyapunov’s second method is hard to realize in practice. The measures we
will discuss in the following assess the basin of stability and so-called survivability
of the system against large, random perturbations at single nodes of the network,
are applicable to general dynamic systems and thus outside the scope of the other
methods.
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3.1 Basin stability

The basin stability (BS) of a multi-stable dynamical system with trajectories x(t)
is the fraction of trajectories that approach a desired set of attractors X� [1]. More
formally, given a region in phase space X0 that contains our generic perturbations,
the basin of attraction within X0 is then XBS = {x(0) ∈ X0| limt→∞ x(t) ∈ X�}.
The basin stability is the ratio of the volumes

μB =
|XBS |
|X0| · (24)

In the case of power grids we define our set of desirable attractors to be exactly those
that are stationary, that is, ω� = 0. The generic perturbations we study depend on the
initial operating state of the system (φ�, ω�) or (φ�, ω�, E�). They are constructed by
taking an arbitrary phase space perturbation δφ ∈ [−π, π] and δω ∈ [−ωmax, ωmax]
and adding them to a single entry (for single node basin stability only one node at a
time is perturbed) in the vectors φ� and ω� respectively. That is: φi(0) = φ

�
i + δijδφ,

ωi(0) = ω
�
i + δijδω, and E(0) = E

�. We choose not to perturb E in order to facilitate
comparisons between the swing equation and the 4th-order model.

3.2 Survivability

Survivability measures the ability of a system to keep within some predefined operat-
ing regime when experiencing large perturbations. For the power grid, this generally
means we want to keep the frequency deviation below ωcrit = 0.2Hz before controls
kick in (according to the ENTSO-E grid code [18]). For our purposes we investigate
a number of different frequency and voltage thresholds, that are more forgiving than
ones used in practice. The surviving region XS of the system is defined as those initial
conditions whose trajectories never violate these bounds. Thus in our case we have:
XS = {(φ(0), ω(0)) ∈ X0|maxt |ω(t)| < ωcrit}. We construct the initial conditions
through perturbing a single node again, choosing ωmax = ωcrit. The survivability is
then given by

μS =
|XS |
|X0| · (25)

In contrast to basin stability, which does not depend on the transient behavior of
the system, the survivability is concerned with the entire trajectory. This can be
considered a more realistic measure for power grids where large transient deviations
could damage the power grids and require manual intervention to bring it back to an
acceptable operating regime.
Given a perturbation that leaves the system within the fixed point’s basin of

attraction, the maximum frequency deviation is typically given by the first swing. As
this is the behavior that is well modelled by the swing equation, we expect that the
Swing equation might be a good approximation for survivability.
Finally, for the fourth order model we have the choice to introduce voltage bounds

that should not be violated. In real power grids the acceptable voltage thresholds are
typically ±0.1 per unit (pu) [18]. In our model, even the voltage values at the fixed
points tend to deviate more than 0.1pu from the normal voltage. We will see later
that the voltage bounds, given by network operators [18], are not as important for
transient stability compared to the frequency bounds but they do play a large role
for the multi-stability of the system though.
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4 Results

We will begin by showing the general differences in the dynamics of the different grid
models by discussing representative time series, the fixed points and the maximum
eigenvalues of the system’s Jacobian in Sect. 4.1. Afterwards, in Sect. 4.2 we compare
the impact of model detail on the basin stability and survivability measure for different
grid topologies. As the fourth order model increases the model detail by the inclusion
of voltage dynamics, in Sect. 4.3 we particularly focus on voltage bounds in the
stability paradigm.

4.1 General model differences

To perturb a system it is necessary to first identify its fixed points. Starting with
a random dispatch scenario, that is, a random distribution of generators (Pi = +1)
and consumers (Pi = −1) across the grid, we try to find a stationary solution for the
swing equation (see Eq. (8)). If the numerical procedure does not converge to a fixed
point solution another random distribution of sinks and sources is chosen.
Having found such a fixed point we use the state with frequency and phase given

by the swing equation fixed point and Ed = 0 and Eq = Ef as the starting point of
a search for a fixed point of the 4th order equation.
Remarkably, for some dispatch scenarios and networks, this search fails. There are

dispatches which according to the swing equation allow for dynamically stable power
transport, but are dynamically unstable under the voltage dynamics. This indicates
that fixed points that are stable in the swing equation can become unstable when the
coupling of the voltage is taken into account.
In order to proceed with the comparison we choose dispatch scenarios that are

dynamically stable for both, the swing equation and the 4th order equation. We then
considered single node perturbations as described above. The frequency f is defined
as f = ω/(2π).
Figures 2 and 3 contain several example trajectories calculated from single node for

the case of the Scandinavian power grid. In many cases, the dynamics behave similarly,
and the 4th order model actually converges faster than the swing equation, as far as
the frequency is concerned, only while also containing a much slower convergence on
the voltage side.
In other cases, such as Fig. 3b, the 4th order model seems to be heading towards

the same regime as the swing equation for a considerable amount of time, but then
enters a new transient regime before settling into a different fixed point. The inter-
mediate time period tends to be around time 400 in most trajectories we observed.
This behavior can be understood in terms of unstable fixed points of the 4th order

equations. In Fig. 3b, it appears that the trajectory first converges very fast towards a
fixed point of the swing equation that is however unstable in the voltage direction. As
we have perturbed the system in the dimensions of the swing equation only, we end
up getting very close to the unstable fixed point, accounting for a long pseudo con-
vergence, before diverging back into a deeply non-linear regime and finally settling,
after a transient of variable length, on a proper attractor (see Fig. 4 for illustration).
The transient that leads us back into the non-linear regime is voltage driven and in
all cases leads to large voltage deviations. We thus see that there is a connection
between large transient voltage deviations and changes in the asymptotic structure.
As noted above, if the Swing equation and the 4th order approach have compara-

ble fixed points, the convergence of the 4th order is faster with respect to the decay of
frequency oscillations. In the case of limit cycles, the oscillations tend to be smaller.
Indeed, the maximal real part of the eigenvalues of the Jacobian of the fourth-order
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Fig. 2. Example trajectories for the Scandinavian power grid are (a) fixed point convergence
and (b) the limit cycle for random single node perturbations with φ185(0) = −0.38 rad,
f185(0) = −10.9Hz and φ199(0) = −3.00 rad, f199(0) = −10.6Hz respectively. The colors of
the trajectories represent the different grid nodes. Typically, the 4th order follows similar
trajectories as the swing equation but converges faster.

model are always larger than those of the swing equation: λ(2) = −0.1 whereas we
have found that in all systems we studied, λ(4) ∈ [−0.14,−0.2].
Generally it is always the case that a limit cycle is associated with a large voltage

deviation. Conversely there are cases of large voltage deviations for fixed points,
though they are considerably more rare.
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Fig. 3. (a) Potentially, the systems ends up in different attractors for 2nd order, fix point
convergence, and 4th order, limit cycle (φ104(0) = 1.6 rad, f104(0) = −10.6Hz). (b) Occasion-
ally, the slow voltage dynamics will drive the system into a chaotic transient at around 100 s
(φ231(0) = 2.1 rad, f231(0) = 4.0Hz). The colors of the trajectories represent the different
grid nodes.

4.2 Basin stability and survivability

In Fig. 5 we compare a map for the Scandinavian power grid where each node is
colored according to its basin stability value [8]. We see that only few individual
nodes have dramatically different frequency convergence. Generally, the geographical
distribution of basin stability changes only slightly with increasing model detail.
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Fig. 4. A sketch of the dynamics. The fixed point of the swing equation (left panel) becomes
unstable when adding the voltage directions (right panel). The perturbation, being purely
in the φ, ω directions, leads us close to the unstable fixed point, but then diverges in the
voltage directions until it enters a non-linear regime again. Being close to the unstable fixed
point means the dynamics are slow on the transient.

Fig. 5. Single node basin stability, μB , for (a) 2nd and (b) 4th order model on the Scandi-
navian network and frequency disturbances in the range [−100, 100]. The node colors refer
to their basin stability value. Most nodes do not change much moving from 2nd to 4th order
(see inlay I). However, a few (see inlay II and central Finland) become dramatically less
stable when including voltage dynamics. Note: squares and circles are net consumers and
producers, respectively.

In Fig. 6 we show scatter plots of the single node basin stability in the 4th order
model versus the Swing equation, for the Scandinavian power grid (Fig. 6a) and two
synthetic power grids (Fig. 6b,c). We see that the swing equation approximates the
stability of power grids well, however, there are some nodes for which it is overesti-
mated. In synthetic grids, with small perturbations, we see that the stability of a small
number of already highly stable nodes is boosted by adding voltage dynamics, on the
other hand some nodes of average stability drop precipitously when switching to the
4th order. In the Scandinavian power grid, only the latter effect occurs. We suspect
that out of a number of stable fixed points of the 2nd order model a previously stable
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Fig. 6. Difference in 2nd and 4th order single node basin stability, μ
(2)
B and μ

(4)
B , for (a)

the Scandinavian grid (maximum frequency perturbation |fmax| = 87.2 Hz), and two syn-
thetic grids (|fmax| = 11.0 Hz): (b) one image shows a combination of network topolgy and
distpatch with typical, and (c) one with outlier behavior. For each grid every node was ran-
domly perturbed 200 times. The histograms accumulate the number of occurences for each
basin stability interval. The plots show that the swing equation tends to overestimate basin
stability.

Fig. 7. Difference in single node survivability, μ
(2)
S and μ

(4)
S , for (a) the Scandinavian grid

(maximum frequency perturbation |fmax| = 87.2 Hz, critical frequency |fcrit| = 8.7 Hz),
and two synthetic grids (|fmax| = 11.0 Hz, |fcrit| = 2.2 Hz), (b) one image shows a combina-
tion of network topolgy and distpatch with typical, and (c) one with outlier behavior. The
histograms accumulate the number of occurences for each survivability interval. The plots
show that survivability is not affected by the voltage dynamics.

fixed point becomes unstable for the 4th order model and reduces the overall size of
the basin of attraction. As the comparison of different synthetic networks shows, the
existence of such switching fixed points depends heavily on the network structure.
Most networks we investigated behave more like the Scandinavian network, with only
a few points changing strongly, some however show strong deviations at almost all
nodes.
Conversely, in Fig. 7 the survivability for interesting frequency boundaries shows

that the voltage dynamic does not affect the maximum frequency deviations during
the transient much. The voltage dynamic is apparently too slow to affect the first
swing strongly, and the first swing continues to dominate the transient. Large devia-
tions in the late transients occur mostly when the system is already in a limit cycle,
and thus has already violated the frequency bounds.
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4.3 Voltage and asymptotic dynamics

We now look at the relationship between voltage transients and asymptotic structures
in more detail. The plots in Fig. 8 are based on single node perturbations in a syn-
thetic power grid. They show that there is an extremely strong relationship between
asymptotic behavior and transient voltages. Figure 8a shows the basin of attraction
(in green) of the fixed points after a perturbation in the frequency and phase at a
specific node. Figure 8b visualizes the phase space of the maximum voltage distance,
the maximum voltage deviation in the whole voltage time series over all grid nodes,
that is caused by a single node perturbation. The red line shows the approximate
boundary of the basin of attraction. We see that there is a very distinct step in the
maximum voltage distance as we cross the frequency basin boundary. Inside the basin,
the maximum voltage distance is basically flat, and does not differ noticeably from
the one at the fixed point.
After this qualitative reasoning, we also calculated a voltage version of single

node survivability which quantifies the ratio of perturbed trajectories for which the
maximum voltage distance stays below 0.1pu. In Fig. 8d all nodes of the example
synthetic grid have the same ratios of trajectories that stay within voltage bounds
and trajectories that show fix point convergence for the frequency of the fourth order
model.
This is remarkable as it links an inherently transient, if slow, property with an

asymptotic one. Note that as shown in [2] this does not hold for the transient fre-
quency behavior. This also confirms that for the survivability assessment for realistic
frequency boundaries, which is entirely concerned with trajectories that return to the
fixed point, realistic voltage bounds like 0.1pu play no role.

5 Conclusions and outlook

In this paper we have taken a first step towards applying stability measures from
complex systems to more detailed models of the power grid.
In our analysis, we searched for distinct features of the different grid models

(see Sect. 4.1). Before perturbation, it was necessary to identify the system’s stable
states first. This search already showed that the fixed point structure of the swing
equation and the 4th order model differed more than anticipated. This picture was
corroborated by the structure of the late, large transients triggered by slow voltage
deviations. Most remarkably, the frequency and phase perturbation leads to a long
trajectory that comes close to a fixed point that is stable in the swing equation but
becomes unstable in the 4th order model.
This change in the asymptotic structure implies a large change in the asymptotic

behavior whenever such a fixed point becomes relevant. This occurred for several
nodes in the Scandinavian power grid. Comparisons of several dispatch scenarios for
the Scandinavian power grid uncovered a consistent small number of nodes showing
these large changes, raising hope that we will be able to identify topological origins
of such instabilities in future work.
The survivability in contrast was barely changed between the swing equation and

the 4th order model. This can be understood as a consequence of two aspects, first
the voltage dynamics is very slow, barely affecting the first swing. The convergence
to a fixed point after the first swing are actually faster for the 4th order model than
for the swing equation as the largest non-zero eigenvalue is consistently smaller than
that of the swing equation by a factor of 1.4 to 2.0. The large transients that are
triggered late in the system, on the other hand, occur mostly when the system is in
a limit cycle regime, and thus has already left the acceptable frequency range.
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Fig. 8. (a) Basin of attraction for the fourth order model. (b) Maximum voltage distance
for different initial conditions. The red overlay is boundary of the basin of attraction. Com-
parison of basin of voltage survival, with the threshold of maximum voltage distance fixed
at 0.1pu, of the 4th order model with (c) basin stability for the swing equation and (d) the
fourth order model. (a) and (b) show how frequency basin stability and maximum voltage
distance perfectly overlay which is supported by the scatterplot of (d) where voltage survival
and 4th order basin stability correlate extremely well.

Maybe the most surprising result was that the transient voltage behavior is inti-
mately linked to the asymptotic structure of the system. Astonishingly, the overlay
of plots for the basin of attraction and maximum voltage deviation deliver a perfect
match (for an example artificial grid). Also, the scatter plot for the survival of volt-
age for maximum voltage distance smaller 0.1pu and basin stability for the 4th order
model shows nearly perfect correlation.
Conversely this implies that transient voltage bounds are completely dominated

by transient frequency bounds. This further removes the need to take voltage into
account for survivability analysis.
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Appendix A. Parametrization of the grid models

In order to facilitate the comparison of our parameter values with the theoreti-
cal physics and the engineering literature we give all the re-parametrizations done
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explicitly in the table below. All values are standard parameters adopted from
[4,11,12,19,20].

Parameter physical units reduced units simulation time units

ωn,−, ωsn 2π · 50 s−1 [20] - 57.357 s−1

Hi 3.318 s [4,11] - -
Td,−, T sd 8.690 s [4,11] - 47.597
Tq,−, T sq 0.310 s [4,11] - 1.698
Xd,−, Xsd 0.111 pu [4,11] - 0.070
Xq,−, Xsq 0.103 pu [4,11] - 0.065
Di, D

r
i , αi 0.01157 s [19] 0.548 s−1 0.1

Pi, P
r
i ,− 0.6337 pu [19,20] ± 30 s−2 ±1

Bij , B
r
ij ,Kij 0.265Ωkm−1 [12] 0.5 pu 6

The Swing Equation is given by

dφi

dt
= ωi, (26)

2Hi
ωn

dωi

dt
= Pi −

∑

j

UiBijUj sin(φi − φj)−Diωi. (27)

We work in the per unit (pu) system, and thus the voltage is given in the node
dependent unit pu that sets the nominal voltage to 1. Thus Ui = 1pu for the swing
equation. The reduced parameters are obtained by absorbing 2Hi

ωn
into Di, Bij and Pi:

P ri =
Piωn

2Hi

Dri =
Diωn

2Hi

Brij =
Bijωn

2Hi
·

These reduced parameters have units s−2, s−1 and s−2 pu−2 respectively.
For performing simulations, time is often further re-parametrized to set P = ±1.

We rescale by τ := βt, and thus with d/dt := βd/dτ . This leads to the equations

β
dφi

dτ
= ωi,

β2
dωi

dτ
= P ri −

∑

j

UiB
r
ijUj sin(φi − φj)−Dri ωi.

With ωs = ω
β
, P si =

P ri
β2
= ±1, Kij = Brij

β2
and αi =

Dri
β
we obtain

dφi

dτ
= ωsi ,

dωi

dτ
= P si −

∑

j

UiKijUj sin(φi − φj)− αiωsi ,

dωi

dτ
= ±1−

∑

j

Kij sin(φi − φj)1pu2 − αiωsi .
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The Fourth-Order Model was transformed analogously, the voltages are not re-
parametrized.

dφi

dτ
= ωsi ,

d2φ

dτ2
= P si − (Eq,iIsq,i − Ed,iIsd,i)− αiωsi (28)

with the current given by

Isi =

N∑

j=1

KijUje
i(φj−φi).

The voltage equations are then given in terms of T s = βT and Xs = β2 2Hi
ωn
X:

T sd,i
dEq,i

dτ
= −Eq,i +Xsd,iIsd,i + Ef ,

T sq,i
dEd,i

dτ
= −Ed,i +Xsq,iIsq,i.

Let us summarize all relationships here:

β2 = |Pi|
ωi = ω

s
i β

αi =
Dri
β
=
ωn

2Hiβ
Di

Kij =
Brij

β2
=
ωn

2Hiβ2
Bij

P si =
P ri
β2
=
ωn

2Hiβ2
Pi = ±1

T s = βT

Xs = β2
2Hi
ωn
X. (29)

In terms of the reactances found in the literature, the parameter X is defined as the
difference between the transient reactance, X

′
d,q, and the static reactance, Xd,q, in

d-/q-axis:

Xd,q := Xd,q −X ′
d,q (30)

where X
′
d and X

′
q are assumed to be equal.
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